3rd International Symposium of LDRP June 1, 2011 Kansai Photon Science Institute Kizugawa, Kyoto

Nonlocal Properties of the Ponderomotive Force in High Intensity Laser Fields

-An Approach Based on the Noncanonical Lie Perturbation Theory-

Natsumi IWATA, Yasuaki KISHIMOTO and Kenji IMADERA

Graduate School of Energy Science, Kyoto University

Development of high intensity lasers

Natsumi IWATA (Kyoto Univ., D1)

Ponderomotive force

Conventional derivation (averaging method)

Equation of motion
$$\frac{d\mathbf{p}}{dt} = mc \left(-\frac{\partial \mathbf{a}}{\partial t} + \frac{\mathbf{p}}{\gamma m} \times (\nabla \times \mathbf{a}) \right)$$
$$\mathbf{p} = \mathbf{p}^{s} + \mathbf{p}^{f} \quad \mathbf{p}^{s} = \langle \mathbf{p}^{s} - \mathbf{p}^{s} \rangle \text{ one cycle of the laser phase}$$
$$\left\{ slow \left(\frac{\partial}{\partial \eta} + \mathbf{p}^{s} \cdot \nabla \right) \mathbf{p}_{\perp}^{s} = -\langle \left(\mathbf{p}^{f} \cdot \nabla \right) \mathbf{p}_{\perp}^{f} \right\rangle \approx -\langle \left(\mathbf{a}_{\perp}(x, \eta) \cdot \nabla \right) \mathbf{a}_{\perp}(x, \eta) \rangle$$
$$\left\{ slow \left(\frac{\partial}{\partial \eta} + \mathbf{p}^{s} \cdot \nabla \right) \mathbf{p}_{\perp}^{s} = -mc \frac{\partial \mathbf{a}_{\perp}(x, \eta)}{\partial \eta} \approx -\langle \left(\mathbf{a}_{\perp}(x, \eta) \cdot \nabla \right) \mathbf{a}_{\perp}(x, \eta) \rangle \right.$$
$$\left\{ fast \quad \frac{\partial \mathbf{p}_{\perp}^{f}}{\partial \eta} + \left[(\mathbf{p} \cdot \nabla) \mathbf{p}_{os}^{l} = -mc \frac{\partial \mathbf{a}_{\perp}(x, \eta)}{\partial \eta} \right]$$
$$\left[ssumption \right] \qquad \eta = \omega t - k z : \text{ phase}$$
$$\left[state{equation of the laser field amplitude is small} \right]$$

Nonlocal effect

$$\left\langle \frac{d\mathbf{p}}{d\eta} \right\rangle = \mathbf{F}_{p} \propto -\left\langle \nabla \mathbf{a}^{2}(x) \right\rangle$$
 (excursion length) << (scale length of ∇a)

However, under strong focusing, higher-order collections become important.

 \rightarrow Systematic perturbation analysis based on the Hamiltonian mechanics

Perturbation analysis

DRP-2011 June 1, 2011

Perturbation expansion to phase space Lagrangian

$$S = \int L dt = \int \gamma_{\mu} dz^{\mu}$$
 perturbation
fundamental 1-form
$$\partial S = 0 \rightarrow \text{ equations of perturbed motion} \qquad \begin{cases} z^{\mu} \equiv (t; \mathbf{q}, \mathbf{p}) \\ \gamma_{\mu} \equiv (-h(t, \mathbf{q}, \mathbf{p}); \mathbf{p}, \mathbf{0}) \\ h: \text{ Hamiltonian} \end{cases}$$

□ Arbitrary noncanonical variables are available

 \rightarrow Make analysis easier

$$h = \sqrt{(mc^2)^2 + c^2(\mathbf{p}_c - mc\mathbf{a})^2}$$
$$h = \sqrt{(mc^2)^2 + c^2\mathbf{p}^2}$$

- Perturbation analysis
 - ← Lie transformation (near-identity, noncanonical), Move to a coordinate which gives a simpler

expression for the perturbed motion.

secular

- oscillation

Preparatory transformation

Particle trajectory in a uniform laser field

 $O(\varepsilon^{0}) \begin{bmatrix} z^{(0)\mu} = (\eta; x, y, z, p_{x}, p_{y}, p_{\eta}) \\ \gamma_{\mu}^{(0)} = (-K; p_{x} + mca_{x0} \sin \eta, p_{y}, p_{\eta}, 0, 0, 0), K = -\frac{1}{2kp_{\eta}} (m^{2}c^{2} + \mathbf{p}_{\perp}^{2} + p_{\eta}^{2}) \end{bmatrix}$ \rightarrow 0th-order equations of motion $a_0^2 = 1.0$ $a_0^2 = 0.1 - -$ 0.8 $\frac{dx}{d\eta} = -\frac{\partial \gamma_0^{(0)}}{\partial p_x} = -\frac{p_x}{k_z p_\eta}$ 0.6 v × B $\frac{dy}{d\eta} = -\frac{\partial \gamma_0^{(0)}}{\partial p_y} = -\frac{p_y}{k_z p_\eta}$ 0.4 0.2 $\frac{dz}{d\eta} = -\frac{\partial \gamma_0^{(0)}}{\partial p_{\eta}} = \frac{1}{2k_z p_{\eta}^2} \left(m^2 c^2 + p_x^2 + p_y^2 - p_{\eta}^2 \right) \quad \succeq \quad 0$ Е $\frac{dp_x}{d\eta} = -\frac{\partial \gamma_1^{(0)}}{\partial \eta} = -mca_{x0}\cos\eta$ Oscillation center -0.2 moves toward -0.4 the z-direction. $\frac{dp_{y}}{d\eta} = -\frac{\partial \gamma_{2}^{(0)}}{\partial \eta} = 0$ period n laser "fast time scale" $\left|\frac{dp_{\eta}}{d\eta} = -\frac{\partial\gamma_3^{(0)}}{\partial\eta} = 0\right|$ propagation motion -1 -0.1 0.2 0 0.1 k7

LDRP-2011 June 1, 2011

Natsumi IWATA (Kyoto Univ., D1)

Transformation to oscillation-center

noncanonical coordinate

$$\begin{cases} z^{\mu} = \left(\eta; x, y, z, p_{x}, p_{y}, p_{\eta}\right) \\ \gamma_{\mu} = \left(-K; p_{x} + mca_{x}(\mathbf{x}_{\perp}, \eta), p_{y}, p_{\eta} + \varepsilon mca_{z}(\mathbf{x}_{\perp}, \eta), 0, 0, 0\right) \\ K = -\frac{1}{2kp_{\eta}} \left(m^{2}c^{2} + \mathbf{p}_{\perp}^{2} + p_{\eta}^{2}\right) : \text{Hamiltonian} \end{cases}$$

noncanonical transformation

$$\gamma_{\mu}dz^{\mu}=\Gamma_{\mu}dZ^{\mu}$$

$$Z^{i} = z^{i} - \tilde{z}^{i(0)}; i = 1, \dots 5$$

$$\tilde{z}^{i(0)} : \text{oscillatory components of}$$

the figure-eight motion

oscillation-center coordinate

$$\begin{cases} Z^{\mu} = \left(\eta; X, Y, Z, P_{x}, P_{y}, p_{\eta}\right) \\ \Gamma_{\mu} = \left(-\kappa; P_{x} + \widetilde{p}_{x}^{(0)} + mca_{x}(\mathbf{X}_{\perp}, \eta), P_{y}, p_{\eta} + \varepsilon mca_{z}(\mathbf{X}_{\perp}, \eta), 0, 0, 0\right) \\ \kappa : \text{new Hamiltonian} \end{cases}$$
Perturbation: $a_{x}(\mathbf{X}_{\perp}, \eta) = a_{x0} + \varepsilon \left(\mathbf{X} + \widetilde{x}^{(0)} - \mathbf{x}_{0}\right) \cdot \partial_{\mathbf{x}\perp} a_{x}(\mathbf{x}_{0}) + \frac{\varepsilon^{2}}{2} \left(X + \widetilde{x}^{(0)} - x_{0}\right)^{2} \partial_{x}^{2} a_{x}(\mathbf{x}_{0}) + \cdots$

Secular particle motion

2nd-order modulation to the ponderomotive force

😰 LDRP-20

LDRP-2011 June 1, 2011

Natsumi IWATA (Kyoto Univ., D1)

Summary

- Noncanonical Lie perturbation method was applied to systematically analyze particle motion affected by the relativistic ponderomotive force.
- We found a coordinate suitable for the analysis including phase η and invariant of the unperturbed motion, p_n .
- Analytical solution corresponding to the betatron-like oscillation was found which suggests possibility of particle confinement in an interaction region with laser fields.

Future work

- Noncanonical Lie perturbation analysis around the oscillation-center
- Investigate higher-order (3rd order ~) collections to the ponderomotive force