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. 1. Why study nuclear fusion ? . . 2. Abstract .
Magnetic fusion plasmas are subject to a variety of instabilities, such as MHD modes and We perform reduced gyro-kinetic simulation (2d sheared slab) with kinetic ion and
micro-instabilities. Micro-instabilities, such as drift-waves, which are scaled by the finite electron species by keeping all gyro-kinetics effects. We found out that the poloidal

H 'H C Carbon Larmor radius (FLR) of ions or electrons are of great importance in order to understand coupling induced by the magnetic island enables unstable modes to dissipate energy by
%r the transport mechanisms and to improve plasma confinement performance of fusion stable modes. However, in contrast to gyro-fluid simulations, the short-wavelength
)/"ﬁ\v + plasmas. modes, which appears in full gyro-kinetic. treatment, substantially reduces the
5 o L. The drift wave is one of the typical micro-instabilities in tokamak plasmas. It has been dissipation channel and the stabilizing effect due to coupling is strongly reduced, indeed
H H H H . o . N . . eas o . . .
/0 .\ ? . Oxygen extensively studied that ion temperature gradient (ITG) driven turbulence may dominate the destabilizing effect due to the formation of new rational surfaces dominates.
the ion transport with the regulation of the self-generated zonal flows. Here, we
T\v — numerically investigate the ion temperature gradient mode (ITG) instability in the
He Energy release ~ 3 eV = presence of a magnetic island using a gyro-kinetic simulation code.
proton-proton cycle in the sun Temperature 1000 K
’ Car ioxi . 3. Multi scale interaction in Tokamaks .

Energy release ~ 27 MeV
Temperature ~ 15 MK
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. 4. Methods . . 5. Results .
We use highly parallelized simulation code (gke [1]) to study gyro-kinetic drift Gyro-fluid results from Wang et al. [2]
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